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Week 5

0.0.0.1 Real numbers v. Rational numbers. The Completeness Axiom implies
that R must contain an element whose square is 2, that is, R contains the num-
ber we refer to as v/2.

There is a real number L such that L? = 2. That is, v/2 exists in R.

To prove this, we will construct an infinite decimal which converges to a real
number L with the property that L? = 2 as follows:

Let I= largest integer such that I% < 2
That is,
P<2<(I+1)? (Clearly I =1.)

di\ 2
Now let dy be the largest integer such that <I + 1—(1)> <2

That is,
di\? di+1\2
I+ — 2 I
< n 10) <2< < T
It follows that 0 < d; < 9 since

2 2
1
(I+£) =IP<2<(I+1)?= (I+ 0)

10 10
(It easy to show that d; = 4. )

dy dy \?
Now let dy be the largest integer such that <I + 1—(1) + 1—022> <2
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That is

dq do 2 dy dy +1 2
I+ —=+—= 2 I+ —
(+10+102) R G TR/

Again it follows that 0 < dy < 9.

d d d
Continuing like this we define an infinite decimal I + ﬁ + 1—022 + 1—033 ... with
dl d2 d3 dn ? dl d2 dS dn +1 2
T+ 24224 B 2 T4+ 24 22 L 28
(‘L10+102+103 ) Ut et e T
di | do ds dyp 1\?
— (422 B O
( Tttt T T 10%)
d d d: dn
IfweletSn:I+—1+—2+—3--+ then we have

10 102 " 103 10m

(Sp)?<2< (S +L :
n n 10n .

The Completeness Axiom guarantees that {5, } converges to some real number
L. That is, lim S,, = L for some L € R.

From the properties of limits it follows that
lim SZ = lim S, lim S, = L?
n—oo n—oo n—oo
li S, L = lim S li L =L+0=1L
7L1—>H<;lo n T 107 o 7L1—>H<;lo n T nl—{go 107 =Lt+0=
1\2
. )
= lim <S”+1—n> =L~

n—o00 0

and so

which means that L2 = 2.
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0.1 Finite Limits

sin(zx)

—4
Consider the functions f(z) = ,g(x) = x 5 These are examples of
7 _

functions which are not defined at a particular point but yet become arbitrarily
close to a particular value as x becomes close to the point at which they are
not defined.

sin(x
(z) becomes close 1

Look at the following table of values where we see that

as x approaches 0:

xz 0.07 0.999183533

X
0.06  0.999400108
l 0.05 0.999583385 [

0.04 0.999733355
0.03  0.999850007
0.02  0.999933335
0.01  0.999983333
0 0 not defined 1
-0.01  0.999983333
-0.02  0.999933335
-0.03  0.999850007
-0.04 0.999733355
-0.05 0.999583385
-0.06  0.999400108

z -0.07 0.999183533
sin(z)

The following is a sketch of the graph of ——=. Note that there is a dot missing
T

sin(zx)

sin(x)

T

is not defined when x = 0. Nevertheless we

at the point (0, 1) because

sin(x
see that in(z)

x
We express this in writing as

becomes arbitrarily close to 1 as x approaches 0.

lim sin(x)

z—0 X

=1
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o L

y:

72—
Look at the following table of values where we see that becomes close

4 as x approaches 2:

x?—4
T —2
I I
r 1.93 3.93 v
xr — 2
1.94 3.94
1.95 3.95
1.96 3.96
1.97 3.97
1.98 3.98
1.99 3.99
2 2 not defined 4
2.01 4.01
2.02 4.02
2.03 4.03
2.04 4.04
2.05 4.05
2.06 4.06
x 207 4.07 o4
xr — 2

1‘2

The following is a sketch of the graph of
2

—4
5 Note that there is a dot missing
T —
x
at the point (2,4) because is not defined when z = 2. Nevertheless we

2

x
see that becomes arbitrarily close to 4 as x approaches 2.
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We express this in writing as

Definition 0.1

Let f be a function defined over an open interval that contains a except possibly
at a itself then lim f(x) = L if for each € > 0 there is § > 0 such that
Tr—a

[f(x) = L| <

whenever 0 < |z —a| < 4.

Informally this definition says that f(x) becomes arbitrarily close to L

(that is, |f(x) — L| < ¢, for any € > 0 however small)

as x becomes close enough to a

(that is, when 0 < |z — a| < ¢ for some § > 0.)
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Example 0.2

2§ |-mmmmm e

[\3_—
2446

w

N

(i) limz = a because, for each € > 0, |x — a| < € when |z — a| < e. That is,

r—a

€=20.

(ii) A statement such as lim3 = 3 is referring to the limit of the constant

r—a

function f(x) = 3 as x approaches a.

In general we write lim k& = k to refer to the limit of the constant function

r—a

f(x) = k as x approaches a.

lim k = k because, for each € > 0, |k — k| = 0 < € for every € R. That

x—k
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is, 6 can be any positive real number.
2

x
(iii) Prove that lim =
z—2 1 — 2

2_ 4 2_4—4(zx-2
x N (x—2) -2
T —2 x—2
And so if we let € = § we have :
x?—4

—4‘<6When |z — 2| < 4.
T —2

(iv) Prove that 111111230 +3=1I
r—

€

|22 +3 — 11| = |2z — 8] = 2|z — 4] < € when(0 < |z — 4| < 5

That is, § = <
2

We can carefully establish simple limits such as limz = a and limk = k using

r—a rT—a

the definition as follows:

Properties of limits:
If lim f(z) = L; and limg(z) = Lo then :

(i) %Ef}l(f(x) +9(z)) = L1 + Lo.

(i) lim (f(2)g(x)) = L1Lo.

. f(SC) 7L1 .
(iii) ilgzg(x) =1, if Ly # 0.

(iv) Let f and g be functions defined over an open interval I containing a with
fl@) <g(z) Vzel.
If lim f(z) = Ly and lim f(z) = Ly then Ly < Lo.

r—a

There is also a version of the Squeezing Theorem for finite limits:

Theorem 0.3 (The Squeezing Theorem)

Let f and g and h be functions defined over an open interval I containing a.
Let f(z) < g(z) < h(z), Vzel\{a}.
If lim f(z) = limh(z) = L then limg(z) = L.

r—a r—a r—a
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Example 0.4

Use the Squeezing Theorem to prove that lim 22 sin(z) = 0.

x—0
—1 <sin(z) < 1= —2? < zsin(z) < 22
and since limo —2? = limosc2 = 0 it follows from the Squeezing Theorem that
xr— xr—

lim 22 sin(z) = 0.

Tr—

0.1.0.2 Left-hand and right-hand limits.

Definition 0.5
1im+f(ac) = L if for each € > 0 there is § > 0 such that
r—a

|f(z) — L| <€, Vo whenever 0 < z —a < ¢.

L is said to be the right-hand limit of f as x approaches a.

Definition 0.6
lim f(z) = L if for each € > 0 there is § > 0 such that

|f(z) — L| <€, Vo whenever 0 < a —x < .

L is said to be the left-hand limit of f as x approaches a.

It is easy to show that if lim f(x) exists and equals L, then the left-hand and
rT—a

right-hand limits both exist and are both equal to L and, conversely, if the
left-hand and right-hand limits both exist and both have the same value L
then lim f(z) exists and equals L.

Example 0.7

(i) Consider the function
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We can see that

lim f(z) =4 and hrgf(:c) =5

x—2~

Since lim f(x) # lim+ f(z) we conclude that lirr12 f(z) does not exist.
r—2~ r—2 x—

(ii) Consider the function
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We can see that

lim f(z) =4 and hrgf(:c) =4

x—2~

Since lim f(x) = lim+f(:c) = 4 we conclude that lirr12f(:c) exists and
r—2 T—

r—2~

lim f(x) =4



