Pat O'Sullivan

Mh4714 Week 5

Week 5

0.0.0.1 Real numbers v. Rational numbers. The Completeness Axiom implies that \mathbb{R} must contain an element whose square is 2 , that is, \mathbb{R} contains the number we refer to as $\sqrt{2}$.

There is a real number L such that $L^{2}=2$. That is, $\sqrt{2}$ exists in \mathbb{R}.

To prove this, we will construct an infinite decimal which converges to a real number L with the property that $L^{2}=2$ as follows:

Let $I=$ largest integer such that $I^{2}<2$
That is,

$$
I^{2}<2<(I+1)^{2} \quad(\text { Clearly } I=1 .)
$$

Now let d_{1} be the largest integer such that $\left(I+\frac{d_{1}}{10}\right)^{2}<2$
That is,

$$
\left(I+\frac{d_{1}}{10}\right)^{2}<2<\left(I+\frac{d_{1}+1}{10}\right)^{2}
$$

It follows that $0 \leq d_{1} \leq 9$ since

$$
\left(I+\frac{0}{10}\right)^{2}=I^{2}<2<(I+1)^{2}=\left(I+\frac{10}{10}\right)^{2}
$$

(It easy to show that $d_{1}=4$.)
Now let d_{2} be the largest integer such that $\left(I+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}\right)^{2}<2$

That is

$$
\left(I+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}\right)^{2}<2<\left(I+\frac{d_{1}}{10}+\frac{d_{2}+1}{10^{2}}\right)^{2}
$$

Again it follows that $0 \leq d_{2} \leq 9$.
Continuing like this we define an infinite decimal $I+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}} \ldots$ with

$$
\begin{aligned}
\left(I+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}} \cdots+\frac{d_{n}}{10^{n}}\right)^{2}<2 & <\left(I+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}} \cdots+\frac{d_{n}+1}{10^{n}}\right)^{2} \\
& =\left(I+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}} \cdots+\frac{d_{n}}{10^{n}}+\frac{1}{10^{n}}\right)^{2}
\end{aligned}
$$

If we let $S_{n}=I+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}} \cdots+\frac{d_{n}}{10^{n}}$ then we have

$$
\left(S_{n}\right)^{2}<2<\left(S_{n}+\frac{1}{10^{n}}\right)^{2}
$$

The Completeness Axiom guarantees that $\left\{S_{n}\right\}$ converges to some real number L. That is, $\lim _{n \rightarrow \infty} S_{n}=L$ for some $L \in \mathbb{R}$.

From the properties of limits it follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S_{n}^{2}=\lim _{n \rightarrow \infty} S_{n} \lim _{n \rightarrow \infty} S_{n}=L^{2} \\
& \lim _{n \rightarrow \infty}\left(S_{n}+\frac{1}{10^{n}}\right)=\lim _{n \rightarrow \infty} S_{n}+\lim _{n \rightarrow \infty} \frac{1}{10^{n}}=L+0=L \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(S_{n}+\frac{1}{10^{n}}\right)^{2}=L^{2} .
\end{aligned}
$$

and so

$$
\begin{aligned}
\left(S_{n}\right)^{2} & <2<\left(S_{n}+\frac{1}{10^{n}}\right)^{2} \\
\Rightarrow \lim _{n \rightarrow \infty}\left(S_{n}\right)^{2} & \leq 2 \leq \lim _{n \rightarrow \infty}\left(S_{n}+\frac{1}{10^{n}}\right)^{2} \\
\Rightarrow L^{2} & \leq 2 \leq L^{2}
\end{aligned}
$$

which means that $L^{2}=2$.

0.1 Finite Limits

Consider the functions $f(x)=\frac{\sin (x)}{x}, g(x)=\frac{x^{2}-4}{x-2}$. These are examples of functions which are not defined at a particular point but yet become arbitrarily close to a particular value as x becomes close to the point at which they are not defined.

Look at the following table of values where we see that $\frac{\sin (x)}{x}$ becomes close 1 as x approaches 0 :

		x	$\frac{\sin (x)}{x}$
	॥	॥	
x	0.07	0.999183533	$\frac{\sin (x)}{x}$
	0.06	0.999400108	
	0.05	0.999583385	
	0.04	0.999733355	
	0.03	0.999850007	
	0.02	0.999933335	
	0.01	0.999983333	
0	0	not defined	1
	-0.01	0.999983333	
	-0.02	0.999933335	
	-0.03	0.999850007	
	-0.04	0.999733355	
	-0.05	0.999583385	
	-0.06	0.999400108	
x	-0.07	0.999183533	$\frac{\sin (x)}{x}$

The following is a sketch of the graph of $\frac{\sin (x)}{x}$. Note that there is a dot missing at the point $(0,1)$ because $\frac{\sin (x)}{x}$ is not defined when $x=0$. Nevertheless we see that $\frac{\sin (x)}{x}$ becomes arbitrarily close to 1 as x approaches 0 . We express this in writing as

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Look at the following table of values where we see that $\frac{x^{2}-4}{x-2}$ becomes close 4 as x approaches 2 :

	x II	$\frac{x^{2}-4}{x-2}$	
x	1.93	3.93	$x^{2}-4$
			$\overline{x-2}$
	1.94	3.94	
\downarrow	1.95	3.95	\downarrow
	1.96	3.96	
	1.97	3.97	
	1.98	3.98	
	1.99	3.99	
2	2	not defined	4
	2.01	4.01	
	2.02	4.02	
\uparrow	2.03	4.03	
	2.04	4.04	
	2.05	4.05	
	2.06	4.06	
			$x^{2}-4$
x	2.07	4.07	$\overline{x-2}$

The following is a sketch of the graph of $\frac{x^{2}-4}{x-2}$. Note that there is a dot missing at the point $(2,4)$ because $\frac{x^{2}-4}{x-2}$ is not defined when $x=2$. Nevertheless we see that $\frac{x^{2}-4}{x-2}$ becomes arbitrarily close to 4 as x approaches 2 .

We express this in writing as

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4
$$

Definition 0.1

Let f be a function defined over an open interval that contains a except possibly at a itself then $\lim _{x \rightarrow a} f(x)=L$ if for each $\epsilon>0$ there is $\delta>0$ such that

$$
|f(x)-L|<\epsilon, \text { whenever } 0<|x-a|<\delta
$$

Informally this definition says that $f(x)$ becomes arbitrarily close to L

$$
\text { (that is, }|f(x)-L|<\epsilon \text {, for any } \epsilon>0 \text { however small) }
$$

as x becomes close enough to a

$$
\text { (that is, when } 0<|x-a|<\delta \text { for some } \delta>0 \text {.) }
$$

Example 0.2

(i) $\lim _{x \rightarrow a} x=a$ because, for each $\epsilon>0,|x-a|<\epsilon$ when $|x-a|<\epsilon$. That is, $\epsilon=\delta$.
(ii) A statement such as $\lim _{x \rightarrow a} 3=3$ is referring to the limit of the constant function $f(x)=3$ as x approaches a.
In general we write $\lim _{x \rightarrow a} k=k$ to refer to the limit of the constant function $f(x)=k$ as x approaches a.
$\lim _{x \rightarrow k} k=k$ because, for each $\epsilon>0,|k-k|=0<\epsilon$ for every $x \in \mathbb{R}$. That
is, δ can be any positive real number.
(iii) Prove that $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4$:
$\left|\frac{x^{2}-4}{x-2}-4\right|=\left|\frac{x^{2}-4-4(x-2)}{x-2}\right|=|x-2|$.
And so if we let $\epsilon=\delta$ we have :

$$
\left|\frac{x^{2}-4}{x-2}-4\right|<\epsilon \text { when }|x-2|<\delta
$$

(iv) Prove that $\lim _{x \rightarrow 4} 2 x+3=11$:

$$
|2 x+3-11|=|2 x-8|=2|x-4|<\epsilon \text { when } 0<|x-4|<\frac{\epsilon}{2}
$$

That is, $\delta=\frac{\epsilon}{2}$.

We can carefully establish simple limits such as $\lim _{x \rightarrow a} x=a$ and $\lim _{x \rightarrow a} k=k$ using the definition as follows:

Properties of limits:
If $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow a} g(x)=L_{2}$ then :
(i) $\lim _{x \rightarrow a}(f(x)+g(x))=L_{1}+L_{2}$.
(ii) $\lim _{x \rightarrow a}(f(x) g(x))=L_{1} L_{2}$.
(iii) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L_{1}}{L_{2}}$ if $L_{2} \neq 0$.
(iv) Let f and g be functions defined over an open interval I containing a with $f(x) \leq g(x) \quad \forall x \in I$.
If $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow x} f(x)=L_{2}$ then $L_{1} \leq L_{2}$.

There is also a version of the Squeezing Theorem for finite limits:

Theorem 0.3 (The Squeezing Theorem)

Let f and g and h be functions defined over an open interval I containing a.
Let $f(x) \leq g(x) \leq h(x), \quad \forall x \in I \backslash\{a\}$.
If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$ then $\lim _{x \rightarrow a} g(x)=L$.

Example 0.4

Use the Squeezing Theorem to prove that $\lim _{x \rightarrow 0} x^{2} \sin (x)=0$.

$$
-1 \leq \sin (x) \leq 1 \Rightarrow-x^{2} \leq x \sin (x) \leq x^{2}
$$

and since $\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0$ it follows from the Squeezing Theorem that $\lim _{x \rightarrow 0} x^{2} \sin (x)=0$.
0.1.0.2 Left-hand and right-hand limits.

Definition 0.5

$\lim _{x \rightarrow a^{+}} f(x)=L$ if for each $\epsilon>0$ there is $\delta>0$ such that

$$
|f(x)-L|<\epsilon, \forall x \text { whenever } 0<x-a<\delta
$$

L is said to be the right-hand limit of f as x approaches a.

Definition 0.6

$\lim _{x \rightarrow a^{-}} f(x)=L$ if for each $\epsilon>0$ there is $\delta>0$ such that

$$
|f(x)-L|<\epsilon, \forall x \text { whenever } 0<a-x<\delta
$$

L is said to be the left-hand limit of f as x approaches a.
It is easy to show that if $\lim _{x \rightarrow a} f(x)$ exists and equals L, then the left-hand and right-hand limits both exist and are both equal to L and, conversely, if the left-hand and right-hand limits both exist and both have the same value L then $\lim _{x \rightarrow a} f(x)$ exists and equals L.

Example 0.7

(i) Consider the function

$$
f(x)= \begin{cases}x^{2}, & x \in[-2,2) \\ x+3, & x \in[2,4]\end{cases}
$$

We can see that

$$
\lim _{x \rightarrow 2^{-}} f(x)=4 \text { and } \lim _{x \rightarrow 2^{+}} f(x)=5
$$

Since $\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$ we conclude that $\lim _{x \rightarrow 2} f(x)$ does not exist.
(ii) Consider the function

$$
f(x)= \begin{cases}x^{2}, & x \in[-2,2) \\ x+2, & x \in[2,4]\end{cases}
$$

We can see that

$$
\lim _{x \rightarrow 2^{-}} f(x)=4 \text { and } \lim _{x \rightarrow 2^{+}} f(x)=4
$$

Since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=4$ we conclude that $\lim _{x \rightarrow 2} f(x)$ exists and $\lim _{x \rightarrow 2} f(x)=4$.

